首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13209篇
  免费   1340篇
  国内免费   686篇
电工技术   942篇
技术理论   2篇
综合类   989篇
化学工业   1923篇
金属工艺   821篇
机械仪表   862篇
建筑科学   1082篇
矿业工程   370篇
能源动力   436篇
轻工业   1230篇
水利工程   266篇
石油天然气   603篇
武器工业   155篇
无线电   1533篇
一般工业技术   1519篇
冶金工业   637篇
原子能技术   106篇
自动化技术   1759篇
  2024年   41篇
  2023年   203篇
  2022年   458篇
  2021年   607篇
  2020年   459篇
  2019年   359篇
  2018年   406篇
  2017年   493篇
  2016年   488篇
  2015年   574篇
  2014年   722篇
  2013年   790篇
  2012年   964篇
  2011年   913篇
  2010年   837篇
  2009年   832篇
  2008年   751篇
  2007年   735篇
  2006年   640篇
  2005年   532篇
  2004年   466篇
  2003年   419篇
  2002年   519篇
  2001年   451篇
  2000年   322篇
  1999年   297篇
  1998年   192篇
  1997年   139篇
  1996年   163篇
  1995年   114篇
  1994年   104篇
  1993年   61篇
  1992年   33篇
  1991年   29篇
  1990年   28篇
  1989年   21篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   7篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1976年   1篇
  1975年   5篇
  1973年   1篇
  1969年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
2.
以16t纯电环卫车箱体为研究对象,通过有限元分析方法的研究,在实现轻量化设计的同时解决了箱体开裂的问题,经实车验证强度满足,同时实现降重40kg,为纯电环卫车的轻量化设计提供了一条可行的途径.  相似文献   
3.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   
4.
5.
6.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
7.
The realization of seawater electrolysis requires high-performing anode materials that should possess good catalytic activity, stability, and specificity for the oxygen evolution reaction (OER) as well as high resistance toward chloride corrosion. Herein, the design of a multilayered oxygen-evolution electrode is reported to meet the multiple needs of anode material for saline water splitting. The multilayered electrode is synthesized through direct thermal boronization of commercially available NiFe alloy plate with boron powder, followed by electrochemical oxidation. And this electrode is composed of the surface oxidized NiFeBx alloy layer, the NiFeBx alloy interlayer, and the NiFe alloy substrate. The boron species are present in the form of metaborate in the outermost oxidized NiFeBx layer, and their existence is conductive to the generation and stabilization of the catalytic active phase γ-(Ni,Fe)OOH. The introduction of NiFeBx interlayer effectively prevents the excessive oxidative corrosion of the anode material in the electrolyte containing chloride ions.  相似文献   
8.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
9.
Despite long-term efforts for exploring antibacterial agents or drugs, potentiating antibacterial activity and meanwhile minimizing toxicity to the environment remains a challenge. Here, it is experimentally shown that the functionality of reduced graphene oxide (rGO) through copper ions displays selective antibacterial activity that is significantly stronger than that of rGO itself and no toxicity to mammalian cells. Remarkably, this antibacterial activity is two-orders-of-magnitude greater than the activity of its surrounding copper ions. It is demonstrated that rGO is functionalized through the cation–π interaction to massively adsorb copper ions to form a rGO–copper composite and result in an extremely low concentration level of surrounding copper ions (less than ≈0.5 µm ). These copper ions on rGO are positively charged and strongly interact with negatively charged bacterial cells to selectively achieve antibacterial activity, while rGO exhibits the functionality to not only actuate rapid delivery of copper ions and massive assembly onto bacterial cells but also result in the valence shift in the copper ions from Cu2+ into Cu+, which greatly enhances the antibacterial activity. Notably, this rGO functionality through cation–π interaction with copper ions can similarly achieve algaecidal activity but does not exert cytotoxicity against neutrally charged mammalian cells.  相似文献   
10.
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号